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Ikro-magnon excitations in the Heisenberg ferromagnet on 
the triangular lattice 

X H Qut and P D Loly 
Department of Physics and Winnipeg Instilute for 'Iheoretical Physics, University of 
Manitoba. Winnipeg. Manitoba R3T 2NL Canada 

Received 13 December 1991, in h a 1  form 19 March 1992 

AktmcL ?he specmm of No-magnon excitalions b ewmined for a w triangular 
Heisenberg ferromagnet with various values of spin (S), king (e) and uniaxial ( D )  
anisotropies and for total wavevectors K in three high-symmetry directions In mntrast 
U) earlier studies of hypercubic lmmagnets (nearest neighbour (NN) chain, quare and 
simple wbic), the width of the continuum never goes to zero, rather reminiscent of 
the NN Fa: we, and the S, c, D paramelen are found to be very significant for the 
behaviour of s, d and single-ion bound states, as well as the continuum which was not 
probed in earlier studies. Internal van Hove singularities play an imponant mle in the 
evolulion of mnances within the mntinuum. Finally the lgulfs are compared with a 
Raman scattering experiment on FeBr2. 

1. Introduction 

Bethe [l] first discovered the bound complexes of spin waves in the ID Heisenberg 
ferromagnet. His work stimulated a general concern about the spectra of two inter- 
acting magnons in the Heisenberg model. Dyson [2] derived a weak T4 correction 
as their temperature effect on the magnetization. Wortis [3] later recovered Bethe's 
results with a systematic Green's function formalism, and established the existence of 
two-magnon bound states in ZD and 3D isotropic hypercubic lattices. In ID there is 
always one bound state for all pair wavevectors K = k1 + k2; in XI at least one, with 
another at large K, and for 3D a large region around K = 0 with no bound states, 
but with one, two and three bound states at larger K. Extensions have been made 
by other workers, especially for the incorporation of uniaxial anisotropy [4, 51 and 
of biquadratic exchange [6, 7.  In ID, Majumdar [SI made an early study on bound 
states in the presence of next-nearest neighbour (NNN) interaction in the late 1960s. 
In an important contribution Boyd and Callaway [9] showed that the doublet bound 
state broadened into a resonance inside the continuum. 

Later Loly and Choudhury [lo] extended the investigation of the evolution of the 
bound states and resonance modes and transitions between them for all K. The 
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Ontario M5S l.44, Canada. 
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relationship between continuum structure and the Occurrence of bound states, the 
role of van Hove singularities in determining the positions of resonances, and in- 
terpretation of corresponding Raman scattering experiments (corresponding to the 
K = 0 continuum) has been reviewed by Loly [ll]. The nearest neighbour (m) 
simple-cubic (sc) Heisenberg model with various values of uniaxial anisotropy was 
studied in [12]. The NNN exchange interaction on the sc lattice wds discussed in 
[13], where it was shown that large enough N” exchange can actually prevent the 
formation of bound states. The NNN ID chain and NN square lattice continua are in- 
vestigated thoroughly in [14] and [15]. Although most information has been obtained 
for hypercubic lattices, the continuum structure has not been fully explored for the 
rather more complicated w )  triangular ferromagnet, as was the case earlier for the 
FCC case [16]. This has relevance to RBrz  [17] whose anti-femmagnetically coupled 
ferromagnetic layers are modelled by our present w )  triangular study, and possibly 
also to nuclear magnetism in layers of 3He on graphite [18]. Previous work by Wada, 
Ishikawa and Oguchi 1191 studied the bound states in the isotropic triangular ferro- 
magnet for spin i, and their numerical study of the bound state equations revealed 
bound states at. large K. The weak binding energy of the s-wave bound state makes 
it difficult to follow it to small values of K in some numerical calculations, although 
analogy with the ZD square lattice [3] leads one to expect it to persist down to K = 0. 
Earlier ’Ibnegawa 141 developed a formalism for the bound-state problem for S 2 1 
and he applied his boundstate results to the quasi-2o RCI, (S = 1) which has a 
large enough singleion anisotropy to form a bound state below the continuum at 
K = 0. However, neither study was able to probe the density of states inside the 
continuum. In this paper we employ the Green’s function formalism, following the 
line of Wortis [3] and Loly er af [12, 131, to make a complete analysis of both bound 
states and the continuum resonances. Significant interplay between the resonances in 
the continuum and the bound states is then clearly revealed. The contribution of spin 
value (S), king anisotropy ( U )  and single-ion anisotropy (D) is also fully studied. 

A spin Green’s function formalism is ideally suited to the thorough study of two- 
magnon excitations at absolute zero temperature because the equation of motion for 
the two-magnon propagator terminates without the need for any decoupling approx- 
imations, thereby yielding an exact set of simultaneous equations for the Green’s 
functions of interest. This is soluble within controllable numerical precision 8 the 
range of exchange interactions is finite. The Green’s function method can also be 
extended to a more complete analysis of the process in Raman scattering experi- 
ments. Unlike the Bethe amuLz [l] and real-space rescaling [20], which are really 
only useful in ID, the Green’s function method works in any dimension, leaving only 
the operation of evaluating the so-called lattice Green’s functions (LGF). 

Section 2 summarizes the necessary Green’s function formulae and the Dyson 
equation for the two-magnon propagators at T = 0 K It is then applied to the tri- 
angular ferromagnet in section 3. Critical points (van Hove-type singularities) for the 
non-interacting two-magnon problem are discussed in section 4. Section 5 discusses 
the results of extensive numerical computations for bound states and resonances in 
both isotropic and anisotropic situations. A comparison is made with the Raman 
scattering experiments on FeBr, [17] which has layers of triangular ferromagnetic 
sheets. The conclusions to be drawn from this study are then given in section 6 
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The system we are considering is described by the Heisenberg Hamiltonian 

H = - c ( I ; j S ~ S ~ + J ; j S ~ S ; ) - c D ( S , 4 ) 2  (1) 
i j  

where a total spin operator Si is assigned to the atom on the ith lattice site. I;i = 
I( IR; - Rj I) and Ji . = J(  (Ri - R, I) denote the exchange integrals coupling the 
atoms on ith and jth iattice sites, which are a function of the relative distance between 
two sites. I i ,  and .Iij denote the longitudinal and uansvese terms, respectively. The 
limit J i j  = 0 gives the well known king model. D controls the uniaxial single-ion 

The derivation of the two-magnon propagator at absolute zero closely follows 
those given in previous papers 112-141 and only a brief outline is presented here 
(a step-by-step derivation is displayed in [Zl]). The scattering of two magnons with 
initial wavevectors k,, k ,  and final wavevectors k’, , IC‘ ,  is described by the Green’s 
function, 

anisotropy. 

G(k , ,k , ;  k i , k L i )  = -ie(t)(ol[s,;(t)s;~(t), s & ( O ) s & ( O ) l l O )  

= ((s~,(t)s~~(l)ls~;(o)s:~(o))). (2) 

The equation of motion for the Green’s function has the standard form 

w G ( k  ,k2;  kk 1 W )  = (0 IIsi, si, > s:; $;I lo) + ((Is;, si2 HI I SL; s:; ) ) w .  (3) 

Introducing a partial Fourier uansformation, 

(4) 
1 

G( i ,  j ,  K ,  w )  = - 

where we define the total and relative wavevectors, 

G( K, b ,  K ,  k’, w )  exp( -ik . R; -I- ik‘ . R, ) 
kk‘ 

K = k ,  + E ,  k = (k, - k 2 ) / 2  

K ’  = k‘, + k c ,  k’ = (k’, - k‘ , ) /2 .  (5) 
Conservation of total wavevector should be maintained during the p r o w  of partial 
Fburier transformation, Le. K = K’. It can then be shown that the equation of 
motion in (3) leads to the following Dyson’s equation 

where 
1 COS k . R; COS k . Rj 

w - R ( K , h )  A ( i , j , K , w ) =  -E 
N *  

1 

N k  

COS IC. Ri(cos $ K .  Rj - cos k .  R j )  
w - R ( K , k )  i ( i , j , K , w ) =  -E 
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I. 

b u m  1. lhe real-space network of the hiangular lattice. 

in which n( K ,  k) is the total energy of a non-interacting two-magnon state 

n ( K , k )  = 2S[21(0) - J(4K +k)- J ( f K  -k)] + 2(2S- l ) D  (7) 

and 

and similarly for I ( 0 ) .  
Dyson's equation can be further expressed in terms of UjF as 

G(i , j ,K,w)=4S2 L i - j + L ; + ,  - sL;6 j0 )  1 ( I 
-2CI(1)L,- iG(1, j , ,K,w) 

+ 2 J(  1 )  COS( $K . RI) L;G( 1 ,  J', K ,  W )  - 2 DLiG( 0 ,  j, K, W )  . 
I 

(9) 

The LGFS are defined by 
1 etk.R. 

Li(K,w) = - 

Dyson's equation is exact and valid for any lattice with an arbitrary range of 
interaction. However, one usually considers a certain approximations on the range of 
interaction so that the chain equations can be truncated to a finite set of equations. 

3. Specializing to the triangular lattice 

The Green's function G ( i , i ,  K,w)  represents the propagator of a two-magnon pro- 
cess invokiing the creation of two spin deviations on two sites separated by a distance 
Ri (on a ZD lattice it is specified by two indices R; = (is,$,)). The spectral func- 
tion of such a process is proportional to -1m G ( i , i , K , u ) .  In a two-dimensional 
triangular lattice (figure 1) we should specify the lattice site by 

R, = l a + m b  

where 1 + m is an even integer, and a and b are equal to 4 and $6 of the edge of 
the basic cell of a triangular lattice. 
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In this work we will examine the spectra of single-ion two-spin deviations (R, = 
(0,O)) and also the NN deviations along the three different directions, which are i = 
( 2 , 0 ) ,  i = (1,l) and i = ( - 1 , l ) .  Shorthand notations for these sites, i = O,l,l‘ 
and l”, are used respectively. These spectra are in turn represented by four Green’s 
functions G(O,O),G(I,l),G(l‘, 1’) and G(l”, 1”), respectively. 

Considering only nearest-interactions (let I i ,  = I, Ji j  = J ,  and introduce an 
king parameter LS = J / I )  the two-magnon dispersion function (7) for the triangular 
lattice is given by 

G ( K , k )  = 8 S I [ 3  - 0 ( 2 a ’ -  1 ) c o ~ 2 k X ~ - 2 ~ ~ ~ c o s k , a ~ o ~ k y b  

- 2od(1 - 01*)(1 -pa) sin ksa sin kyb+ Z(2S- l )D]  
= 8SI (3  - o A c o s 2 k z a - 2 a B c o s k , a c o s k y b - 2 o C s i u  k,asin kvb] 

+ 2(2S - 1)D (10) 
where a = COS i K , a ,  p = cos $ K y b  and other parameters are defined as 

The LGFS are expressed as the integrals over the Brillouin zone. The integrations 
are computed for general K using the Linear analytical triangular method [22]. Some 
interesting recurrence relations of the lattice Green’s functions for a general K + 0 
can be developed and these provide a way to check the results of numerical calculation 
[21]. Analytical expressions are available in some special cases. When K = 0, 
Horiguchi [E] showed that the u j ~ s  may be expressed in term of the complete 
elliptic integrals of the first, second and third kind. Also at the M point, where 
K ,  = 0 and Kv = T ,  the L G F ~  may he expressed in a rather simple form and 
evaluated even more easily 1211. 

With nearest-neighbour (NN) interactions, and taking into account some symme- 
try properties of the triangular lattice, it can be seen that (9) connects the four 
Green’s functions mentioned above with each of the other three Green’s functions. 
Letting i and j in Green’s functions G ( i , j , K , w )  take one of the four values 
(O,O), ( 2 , 0 ) ,  ( l , l ) ,  and (-l,l), and denoting G ( i , j , K , w )  by the 4 x 4 matrix 
G, the equations can be written more compactly as one matrix equation 

( I  + Q)G = R (11) 

where I is the identity matrix, the coefficient matrix Q is a 4 x 4 matrix, and another 
4 x 4 matrix R contains aU inhomogeneous terms. The elements of both Q and R are 
functions of the LGF. Solving this matrix equation will give the four diagonal spectra 
which interest us. 

4. Critical points 

Critical points are also important in analysing the structure of two-magnon propa- 
gators and their evolution as a function of K. We deEne the density of states, or 
spectral function, of any excitation by 

1 
p(w)  = - - c ( w - w , ) .  

N k  
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Here, k is the wavevector , and wk is the dispersion relation. Replacing the summa- 
tion by an integration over the first BZ, 

The critical points occur when IVwkl = 0, and lead to the various singularities 
in the density of states. They were first studied by van Hove [24] in the context of 
oneparticle excitations. Critical points are also important in analysing the structure 
of two-magnon propagators and their evolution as a function of K. 

Differentiating (10) with respect to kza and kvb, with some simple algebra, we 
obtain the following solutions for critical points which can be divided into two groups. 
The first group is given by sin k,u = sin k b - 0, or cos k,a = cos k,b = 0, for 
all values of a and p. They correspond to the hgh-symmehy points r (the centre of 
first BZ) and M, M', M" of the first Brillouin zone in k space. They have energies, 

Y T  

wy = 8 S l { 3  - a ( 2 d  - 1) - 2uap} + 2(2S - l ) D  

wM = 8 S f { 3  - a ( 2 d  - 1) + 2uap} + 2(2S - 1)D 

wM, = 851{3  + o(2az - 1) - 20J(1 - &)(1 - pz)]  + 2(2S - l ) D  

r(k,a = 0 ,  k,b = 0 )  

M(k,u = 0 ,  hyb  = K) 

M'(r /2 ,  n / 2 )  

wM,, = 8 S l { 3  + 4 2 a z  - 1) + 20\/(1- aZ)(l - pz)}  t 2(2S - l )D  

MI'( - r / 2 , 7 r / 2 ) .  

In mntrast to these four solutions the remaining group of critical points move in 
k space as a and p vary. They are determined hy the set of equations: 

2ABcosk ,u  = ( C z - B 2 ) c o ~ k y b  

2ACsink ,a=(CZ-BZ)s in leyb .  

Some different cases of parameters B and C should be distinguished and treated 
separately. The full lies in figure 2 shows the critical lines of the isotropic 2D 
triangular lattice. (Ignore the other data for the moment.) 

Laly d a1 have studied the dispersion of the critical points with K in the square 
lattice [lS] and sC lattice [Z]. With only isotropic NN interactions present, their 
critical points both consist of straightlines (a plotted as a function of a), which 
correspond to high-symmetry points I-, X, M (and R in 3~ sc), and both cases have 
zero bandwidth at the Brillouin Tane corner. Rr the sc lattice these lies begin to 
bend, and critical lines which do not correspond to the high-symmetry points appear, 
only after the next-nearest-neighbour (N") coupling is taken into amun t .  However, 
in the triangular lattice the complicated nature of the lattice results in bath groups of 
critical lines bending, as well as a non-zero minimum bandwidth existing even when 
only NN isotropic interactions are present. A similiar phenomenon was also found for 
the NN FCC magnet 1161. 
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Figure 2 Dspelsion of msonance peaks and bound 
stales in Ihc .wtivpic case; D = 0 ,  o = 1 and 
S = 1. ?he full curves give the upper and lower 
dges of the two-!nagnon mntinuum as well as the 
intemal critical lines (labelled as r,M,M',M", 
and A,p,6) ,  for w as a funclion of K Were 

m0nancz.s of the three 6psara ~e denoted Ly EI 
for G ( O , O ) ,  + for G(I ,I ) ,  and x for G(l',l'). 
Ibe bound states klw the mntinuum are denoted 
ty asterisks C) [or type-s, by triangles (A) for lypc- 
d 

K p t h r o u g h  r -+ x - M - r. T ~ C  

. 
The main computational effort is associated with the evaluation and storage of 
the 10 LOFS for different K and w values. The set of equations in (11) are 
then solved by numerically inverting (I + Q) and the diagonal Green's functions 
G(O,O), G(l,l), G(l ' ,l ')  and G(1",1") are obtained. As K changes along high- 
symmetly directions from r - X .-+ M .-+ r, two of the three NN Green's 
functions are always identical, leaving only two of them independent. Therefore only 
G(O,O), G(l,l) ,  G(l ' ,l ')  need to be presented here. 

5.1. S = 1 ,  K = 0 isotropic erchange 

Figure 3 shows the continuum spectrum of G(O,O), G(1, l )  in the isotropic case 
where D = 0, and cr = 1 for IC = 0, and S = 1. With the unit of energy (U) 
chosen as I, the peak of G(0,O) is found at w = 27.8, while the peak of G ( 1 , l )  is 
at w = 30.8. The &tical point at w = 32.0 is associated with a sharp drop in both 
G(0,O) and G( 1,l) and creates a shoulder above this point. At K = 0 the rise in 
G(1,l) at the bottom of the band is all that remains of the s-wave exchange bound 
state, whose binding energy mnishes at that point 

In previous studies [ l l ]  it has been instructive to lmte the king levels, which 
are obtained by reducing Jij  (the transverse terms of the exchange integrals in (1)) 
to zero. In this limit, the energy of two spin deviations on adjacent lattice sites (NN) 
is 22SZ + 2D(2S - l), while two deviations on the same site (single-ion) require an 
energy of 2451. 
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Figure I Wo-magnon spectra at K = 0 io the isotropic case; D = 0 ,  d = 1 and 
S = 1. me asthked a w e  r e p m n t s  single-ion spedra, - Im G(O,O), while the Cull 
curve represenu NN specua, - I m G ( l , 1 ) ~  

5.2 S = 1 ,  K # 0 kotropic erchange 

In our numerical calculations we begin to detect bound states below the lower bound- 
ary of the continuum as K moves close to X, the comer of the first B Z  For K # 0 
the excitations along diiTerent directions are certainly different so that the degeneracy 
at IC = 0 is Wed by the appearance of a second distinct NN excitation spectrum, 
G(l',l'). As lKl increases, the principal resonances of single-ion spectra and the 
two nearest-neighbour spectra generally move down in energy. Figure 2 shows how 
the resonances of the continuum and the bound states evolve as a function of K in 
the isotropic case. In our Green's function formalism the bound state is expressed by 
a 6-function singularity of the imaginary part of the Green's function located outside 
the boundaries of the continuum. The real part of the Green's function exhibits &- 
type behaviour at points where the imaginary part exhibits a 6-function singularity. 
Since a 6-function in the spectra of Im G( i, i, K, U )  is too narrow to be detected, in 
practice the bound state is located by checking the sign change of Re G ( i ,  i ,  K , w ) .  
In the isotropic case our numerical calculations only resolve one bound state below 
the continuum for S = 1. It keeps very close to the bottom of the continuum, and 
appears to join the continuum at the X p i n t  (K = (is, s)), but is found again in 
the X - M region These bound states are identified as poles of all three two- 
magnon propagators G(O,O),  G(l , l ) ,  G(l',l') in the r + X region and also in 
the M + r region, but they are the poles of the propagator G( l', 1') only in the 
X + M region. We adopt the commonly used terminology of the hypercubic case 
[12] to call the bound state where all three Green's functions have poles the 'type-s' 
exchange bound state, and the bound state where only G( l', 1') has pole 'typed'. 
In the absence of anisotropy our numerical results for S = 1 resolve only the type-s 

G 
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hound state in the r + X and M - r regions, and enly the typed hound state 
in the X + M region. 

5.3. Resonance dynamics and the continuum structure 

The critical lines exhibit a very strong inauence on evolution of the spectrum. In 
figure 2, the G(1,l) and G(l',l') resonances approach the critical line M, M' 
between 0.40 and 0.60 (r - X). (Here we introduce notation for positions along 
the line from r to X) While the principal peak k restrained below the critical line, 
an additional hump shows up on the upper side of the aitical line. Such effects were 
first observed by Loly and Choudhury [lo] in a study of the NN sc case. The Same 
phenomenon is also detected in the G(0,O) resonance when it reaches the critical 
line between 0.84 and 0.90 (r -+ X). The principal resonances of neither G ( O , O ) ,  
nor G(1, l), nor G(l', 1') appear to be able to penetrate the critical line. However, 
G(1,l) shows a stronger repulsion with the critical line, such that it crosses over 
both G(0,O) and G(I',l') on the way to the mne comer. In the (X + M )  
region, some weight builds up along the line M' (figure 2) and joins with the upper 
humps which just penetrate the M'-he. Other peaks pick up from the bottom at 
K = ( 0 ,  r) (M-point) and climb along the line M. Eventually all peaks join together 
as K goes back to r - o u r  starting point at the centre of the first BZ Figure 4 shows 
the spectrum of two-magnon propagators of an isotropic lattice for some selected K 
values, which forms the basis for figure 2 In particular, figure 2(a) shows very strong 
enhancement at the bottom of the, band for G ( O , O ) ,  G(l, 1) and G(l', 1') at the 
point K = 0.8 (r --t X). This is associated with the types bound state, which lies 
just below the bottom edge near X The influence in the continuum of bound states 
is more visibly illustrated in the X - M region, where sharp peaks very close to 
the bottom of the continuum are found at K = 0.1 (X - M )  in both the G(1,l) 
and G( l', 1') spectra. The type-d bound state, which is the pole of G(l', 1'), is then 
close to the edge. At K = 0.4 (X -+ M )  only a strong enhancement of G(1,l) 
is detected at the bottom of continuum, while the weight of G( l', 1') probably goes 
into this bound state. 

5.4. Spin dependence 

The effect of the spin magnitude S, which is often ignored by previous researchers, 
is found to be quite significant to the behaviour of bound mates, as shown in figure 5. 
For S = 1 our numerical results find only one bound state at each K value. When 
the value of S changes from 1 to U?, while other parameters are kept the same, the 
bound states are more strongly bound so that when S = 1/2 we find both type-s and 
typed bound states for large IKI values in the neighbourhood of the X point Our 
results are consistent with the S = 1/2 results of Wada ef al 1191, but unfortunately 
they did no calculations for S = 1. 

Wada er a1 [19] have examined the bound states of the ZD triangular lattice for 
S = by another method, which is described in Mattir's book [26]. In order to 
compare with our results, we programmed their formulae, recalculated the bound 
states at both S = 1 and S = :, and carefully compared the data &om the two 
methods. All results reached full agreement within the resolution of their published 
diagrams. 



n g v n  4. lbo-magnon spectra of selected value of K as a function of w. The cases 
shown are (a) K = 0.8, along F-X, (b) K = 0.9, along r-X. (c) X point, (d) 
K = 0.1, along X-M, (e) K = 0.4, along X-M, (f) M poinl. ?he graphs all mncero 
the case of S 1 and *ompic exchange. In all cases he asterisked NNC is used lor 
C ( O , O ) ,  a full a w e  for G ( l , l ) ,  and a h k e n  mwe for G(l ' , l ' ) .  
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ngtlw 5. Comparison teween lhe bund states of 
S = 1 and S = 5 m the htmpic cas, as K 
goes lhmugh I’ + X + M -+ I’. The aitical- 
p in t  singularities ale labelled as in figure 3. Fa 
&crena the energy (unit, I) is scaled for S = 1 
at the lets and br S = 112 at the right. The 
bound states belaw the mntinuum are denoted by 
8 [or S = 1 and by aslerisks tor S = 112. For 
clarity, the type-s and typed are labelled by lhe 
same symbol. 

5.5. Anisotropies 

We studied several different cases of anisotropies by experimenting with the size of 
the D and U anisotropies respectively. For a brief illustration we only present one 
case where D and o are taken as 226 and 0.78, respectively. These particular values 
are chosen to compare with the Raman scattering experiment which is discussed in 
the next subsection. D anisotropy produces a gap below the continuum band and lifts 
the whole band by 2(2S-l)D, while U anisotropy squeezes the band. Figure 6 shows 
the spectrum at the BZ centre (K = 0). In general, the resonance of G(0,O) at 
K = 0 is barely affected when D introduces the shift, but it is affected slightly when 
U deforms the continuum. On the other hand, the resonance of G( 1,l) exhibits 
significant changes when various D and U are introduced. However, the position 
of the resonance with respect to the band remains essentially unchanged. Figure 7 
shows the critical lines still playing an important role in directing the evolution of 
resonances, as is also shown in our discussion of the isotropic case. However, there 
are some significant differences due m the effect of anisotropies. The trajectories of 
the resonances are apparently shifted, mainly due to the shift of their starting points, 
as we discussed in the previous paragraph. Another phenomenon is that the humps 
formed on the upper side of the critical line become much smaller as D becomes 
larger. From several different anisotropic cases which we have studied [Il l ,  it appears 
that the evolution of resonanca can probably be determined roughly by knowing their 
starting positions and the topology of the critical lines. 

The positions of type-s and typed bound states are barely changed by the presence 
of D and U, though our study of other anisotropic cases shows that they seem to be 
’pulled’ slightly closer to the bottom of the continuum by the single-ion anisotropy 
(D). The formation of additional ’single-ion’ bound States is detected as expected, 
enhanced by the effect of the D anisotropy. For relatively small values of D, we 
used a hybridization of type-s with the single-ion type of bound states that exist for 
all regions r + X - M - r. For much larger values of single-ion anisotropy a 



F@rt 6 'Pwo-magnon specva at K = 0 for Figure 7. Dispersion ol m n a n a  peaks and bound 
D = 2 . 2 6 , ~ = 0 , 7 8 a n d S = l . T h e f f t e l i s l t a f  s k a ~ f o r D = 2 . 2 6 , 0 = 0 . 7 8 a n d S = l , a ~ K  
awe npresents single-ion spenra. - Im G(O,O), p lhmugh r -+ X -+ M - r. The critical- 
the Cull m q r o e n u  NN specm, - Im G(1, l ) .  point singularities - denoted with lhc same mn- 

vention as m QUE 3. The mnances of the 
three spcclra are dcnoted ly @ for G(0,O). + for 
G(1, l ) .  and Y for G(I' , l ' ) .  The bound skates 
below the mnl iuum are denoted ky asterisks for 
type-s, and lriangles for typed. The 'single-ion' 
bound skate which lies below both lypea and rypc- 
d is also denoted ky an asterisk. 

true singleion bound state will be found to extend to the BZ centre (K = 0) .  

5.6. A .m model for FeBr, and Raman scatIering 

?ko-magnon Raman scattering was discovered in the mid-196aE when lasers be- 
came available for studying solids [27. For transparent antiferromagnets, Fleury 
[ZS] showed that the strong magnon-magnon interactions distorted the spectra from 
the bare density of states; this was soon explained by the theoretical calculation of 
Elliott et al [29]. The small wavevector of optical radiation means that one-magnon 
scattering occurs in the centre region of the Brillouin mne (K = 0); the two-magnoa 
process arises f" a pair of magnons with equal and opposite wavevectors, so that 
again the total wavevector (K) is constrained to the centre of the first Brillouin zone. 

Raman scattering in FeBr, has been studied by Psaltakis et a1 [17] and Johnstone 
er al 1301. lhe structure of FeBr, comprises layers of cations sandwiched between 
two layers of anions, with such composite sheets stacked along the trigonal c axis. 
The Fez+ layer is a two-dimensional triangular lattice. This salt is known to exhibit 
certain two-dimensional ferromagnetic character below the N6el temperature, since 
the intersublattice coupling is substantially smaller than the intra-sublattice coupling. 
Psaltakis m al [l? identified the peak at 90.6 an-' = 27.961 as a two-magnon line, 



Two-magnon stam on the triangular lnllice 5431 

and interpreted the two peaks at 29.6 cm-' = 9.141 and 127.5 cm-' = 39.351 
as possible evidence of two-magnon bound States below and above the continuum, 
respectively. In our calculation, where D = 2.27 and U = 0.78 are chosen to reflect 
the parameters measured in the FeBr, salt, we found the resonance of G(0,O) at 
26.41 and G(l, 1) at 33.101, while lower and upper boundaries of the continuum 
are at 9.771 and 37.81, respectively. This is in reasonable agreement with the 
experiment of Psaltakis et d, even though our model only consists of a single layer of 
the Uiangular lattice and nearest-neighbour interactions. Further study incorporating 
threedimensionality is needed in order to to give a more precise explanation of 
the shape of the Raman spectrum. Such calculations would, at present, be quite 
formidable computationally. 

In FeBr, the ratio of the NN interlayer coupling parameter to the NN inaalayer 
parameter is 0.29. The same ratio in FeCl2, which has similiar magnetic structure, 
is only 0.05 [31]. In this sense FeCI, seems even closer to our 2~ triangular model. 
However the two-magnon scattering peak in WCI, was not found experimentally 
[31], and we expect, following lbnegawa 141, that a single-ion bound state below the 
continuum would be a strong feature of its strong uniaxial anisotropy. 

6. Conclusions 

The behaviour of two-magnon bound states and resonanms of the ZD NN triangular 
Heisenberg ferromagqet was examined for total pair wavevectors K in three high- 
symmetry directions. The general results are found to be consistent with the previous 
work in the 3D lattice, as well as the plane square lattice. However, the more com- 
plicated nature of the triangular lattice does @ve rise to some interesting phenomena 
which are not present in simpler lattice structures. The effect of the spin magnitude 
S, which is rarely considered by other researchers, is found to be quite significant. 
The NN triangular case shares with the NN FCC case a non-zero minimum width of 
the continuum (as plotted as a function of K). It also has a much more complicated 
internal structure of the non-interacting spectrum as shown by our study of its critical 
lines. A strong enough D always produces a single-ion bound state, while a small 
enough D also helps form bound states. 

The general trends which we have elucidated give a reasonable degree of mnfi- 
dence that the simpler analysis of the unperturbed continuum structure would enable 
one to predict the behaviour of the resonances once a starting point has been estab- 
lished. We have compared our results with the available data from Raman scattering 
experiments for FeBr, and a fairly good agreement is achieved. 
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Norc &d k Pwf. W a p  wilh an obscrvalion Ly one of the rcicrecs that it U apcnd that a 
bound slalc ais@ for all K, m analogy with the NN q u a r e  lattice [X]. This follows I" thc finite band 
edgc dcnsily-of-rralcs of bare magnons (and h c n o  LGP) characteristic of 20 l a l t h  for all K acept at 
the M point (wherr these dngularilier kcomc inverre quare mats through mllapsc to 1D). Numerical 
calculalions d the lypc uscd here arc not optimized Lo search for very maw bound mtes, but ralher 
address the question d continuum structure in general in d e r  to gain an understanding of lhc localion 
d two-magnon Raman m n a n c e s .  
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