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Abstract. The spectrum of two-magnon excitations is examined for a 20 triangular
Heisenberg ferromagnet with various values of spin (S), Ising (o) and uniaxial (D)
anisotropies and for total wavevectors K in three high-symmetry directions. In contrast
1o earlier studies of hypercubic ferromagnets (nearest neighbour (NN) chain, square and
simple cubic), the width of the continuum never poes to zero, rather reminiscent of
the NN FocC case, and the S, o, D) paramelers are found to be very significant for the
behaviour of s, d and single-ion bound states, as well as the contiruum which was not
probed in earlier studies, Internal van Hove singularities play an important role in the
evolution of resonances within the continuum. Finally the results are compared with a
Raman scattering experiment on FeBry.

1. Introduction

Bethe [1] first discovered the bound complexes of spin waves in the 1D Heisenberg
ferromagnet. His work stimulated a general concern about the spectra of two inter-
acting magnons in the Heisenberg model. Dyson [2] derived a weak 7" correction
as their temperature effect on the magnetization. Wortis [3] later recovered Bethe’s
results with a systematic Green’s function formalism, and established the existence of
two-magnon bound states in 2D and 3D isotropic hypercubic lattices. In 1D there is
always one bound state for all pair wavevectors K = k, -+ k,; in 2D at least one, with
another at large K; and for 3D a large region around K = 0 with no bound states,
but with one, two and three bound states at larger K. Extensions have been made
by other workers, especially for the incorporation of uniaxial anisotropy [4, 5] and
of biquadratic exchange [6, 7]. In 1D, Majumdar [8] made an early study on bound
states in the presence of next-nearest neighbour (NNN) interaction in the late 1960s.
In an important contribution Boyd and Callaway [9] showed that the doublet bound
state broadened into a resonance inside the continuum.,

Later Loly and Choudhury [10] extended the investigation of the evolution of the
bound states and resonance modes and transitions between them for all K. The

1 Present address: Department of Metallurgy and Material Science, University of Toronto, Thronto,
Ontario M58 1A4, Canada.
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relationship between continuum structure and the occurrence of bound states, the
role of van Hove singularities in determining the positions of resonances, and in-
terpretation of corresponding Raman scattering experiments (corresponding to the
K = 0 continuum) has been reviewed by Loly [11]. The nearest neighbour (NN)
simple-cubic (sC) Heisenberg model with various values of uniaxial anisotropy was
studied in [12]. The NNN exchange interaction on the SC lattice was discussed in
{13], where it was shown that large enough NNN exchange can actually prevent the
formation of bound states. The NNN 1D chain and NN square lattice continua are in-
vestigated thoroughly in [14] and [15]. Although most information has been obtained
for hypercubic lattices, the continuum structure has not been fully explored for the
rather more complicated 2D triangular ferromagnet, as was the case earlier for the
FCC case [16]. This has relevance to FeBr, [17] whose anti-ferromagnetically coupled
ferromagnetic layers are modelled by our presenmt 2D triangular study, and possibly
also to nuclear magnetism in layers of 3He on graphite [18]. Previous work by Wada,
Ishikawa and Oguchi [19] studied the bound states in the isotropic triangular ferro-
magnet for spin %, and their numerical study of the bound state equations revealed
bound states at large K. The weak binding energy of the s-wave bound state makes
it difficult to follow it to small values of K in some numerical calculations, although
analogy with the 2D square lattice [3] leads one to expect it to persist down to K = 0.
Earlier Tonegawa [4] developed a formalism for the bound-state problem for S > 1
and he applied his bound-state results to the quasi-2b FeCl, (S = 1) which has a
large enough single-ion anisotropy to form a bound state below the continuum at
K = 0. However, neither study was able to probe the density of states inside the
continuum. In this paper we employ the Green’s function formalism, following the
line of Wortis [3] and Loly et af [12, 13}, to make a complete analysis of both bound
states and the continuum resonances. Significant interplay between the resonances in
the continuum and the bound states is then clearly revealed. The contribution of spin
value (S), Ising anisotropy (o) and single-ion anisotropy (D) is also fully studied,

A spin Green’s function formalism is ideally suited to the thorough study of two-
magnon excitations at absolute zero temperature because the equation of motion for
the two-magnon propagator terminates without the need for any decoupling approx-
imations, thereby yielding an exact set of simultaneous equations for the Green's
functions of interest. This is soluble within controllable numerical precision if the
range of exchange interactions is finite. The Green's function method can also be
extended to a more complete analysis of the process in Raman scattering experi-
ments. Unlike the Bethe ansatz [1] and real-space rescaling [20], which are really
only useful in 1D, the Green's function method works in any dimension, leaving only
the operation of evaluating the so-called lattice Green’s functions (LGF).

Section 2 summarizes the necessary Green’s function formulae and the Dyson
equation for the two-magnon propagators at 7 = 0 K. It is then applied to the tri-
angular ferromagnet in section 3. Critical points (van Hove-type singularities) for the
non-interacting two-magnon problem are discussed in section 4. Section 5 discusses
the results of extensive numerical computations for bound states and resonances in
both isotropic and anisotropic situations. A comparison is made with the Raman
scattering experiments on FeBr, [17] which has layers of triangular ferromagnetic
sheets. The conclusions to be drawn from this study are then given in section 6.
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2, The two-magnon propagator

The system we are considering is described by the Heisenberg Hamiltonian
= =D _(;; 18] + J;;SF 55 )—ZD(S‘)z 4]

i
where a total spin operator 5; is assigned to the atom on the ith lattice site. I;;
I(|R; — R;[) and J;; = J( IR R;[) denote the exchange integrals couplmg the
atoms on zth and jth fattlcc sites, whxch are a function of the relative distance between
two sites. I;; and J;; denote the longitudinal and transverse terms, respectively. The
limit J;; = © gives the well known Ising model. D controls the uniaxial single-ion
anisotropy.

The derivation of the two-magnon propagator at absolute zero closely follows
those given in previous papers [12-14] and only a brief outline is presented here
(a step-by-step derivation is displayed in [21]). The scattering of two magnons with
initial wavevectors k,,k, and final wavevectors k’,, k', is described by the Green’s
function,

Gky, kq; k1, k5, 1) = —i0(1){0|[Sg, (1) SE (1), S5 (0) S (0)]10)

= (S, ()55, (1)1 5% (0) S, (0))). @
The equation of motion for the Green’s function has the standard form
wG(ky, ki By, ey, w) = (0185, Si,» S, SENI0) + (IS, S, HIIS S b B)
Introducing a pamal Fourier transformation,
. 1 . .
G(i, 5, K ,w) = 57 )_ GUK, k, K,k ,w) exp(~ik - B, + ik’ - R;) “
kk!

where we define the total and relative wavevectors,

K==k +k k=(k, —ky)/f2

K=k, +k, k= -k)/2 o
Conservation of total wavevector should be maintained during the process of partial

Fourier transformation, ie. X = K’. It can then be shown that the equation of
motion in (3) leads to the following Dyson’s equation

6, -
G(i,j, K,w) =882 (1 - 2—?) A(d, 5, K,w) + QZI;A(i,E,K,w)G(l,j,K,w)
i
+2Y (4~ 1) [AG, LK, w) 4 R(i, LK w)] G b, K )
{

~ 23" DA(iL, LK, w)G(, §, K, w)éy (6)
1

where
cosk-R;cosk-R;

. 1
A(z'lJ,K’w)_‘TV—Zk: U“Q(K,k)

. cosk-R(cosiK-R,—cosk-R,)
A(zsjaKﬂ"))'—Wz . wa(KJk) 2
% )




5422

Figure 1. The real-space network of the iriangular lattice,

in which Q( K, k) is the total energy of a non-interacting two-magnon state
QK , k) = 25[21(0) - J(3K + k) — J(LK — k)] +2(25 - 1)D (7)
and

J(k) =Y exp* R J(Ry) )
{

and similarly for 7(0).
Dyson’s equation can be further expressed in terms of LGF as

Gliy 3, K w0) = 457 Ly + Ligy = §Eidia) =2 MO LGl o)
{

+2) J()cos(}K - R)L;G(l, 5, K ,w) — 2DL,G(0,5,K,w).
!

®)
The LGFs are defined by

lkR

t(K w) - N Z ;—m e T

Dyson's equation is exact and valid for any lattice with an arbitrary range of
interaction. However, one usually considers a certain approximations on the range of
interaction so that the chain equations can be truncated to a finite set of equations.

3. Specializing to the triangular lattice

The Green’s function G(i,1, K ,w) represents the propagator of a two-magnon pro-
cess involving the creation of two spin deviations on two sites separated by a distance
R; (on a 2D lattice it is specified by two indices R, = (¢,,1,)). The spectral func-
tion of such a process is proportional to —Im G(i,{,K,w). In a two-dimensional
triangular lattice (figure 1) we should specify the lattice site by

= la 4+ mb

where | + m is an even integer, and a and b are equal to 1 and 1/3 of the edge of
the basic cell of a triangular lattice.
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In this work we will examine the spectra of single-ion two-spin deviations (R, =
(0,0)) and also the NN deviations along the three different directions, which are i =
(2,0), i=(1,1) and ¢ = (—1,1). Shorthand notations for these sites, i = 0,1,1/
and 17, are used respectively. These spectra are in turn represented by four Green’s
functions G(0,0),G{(1,1),G(1',1') and G(1",1"), respectively.

Considering only nearest-interactions (let I;; = I, J;; = J, and introduce an
Ising parameter o = J/I) the two-magnon dispersion function (7) for the triangular
lattice is given by
QK ,k) = 8SI[3 — a(2a® — 1) cos 2k, a ~ 20 afcos k,a cos k,b

- 20V/(1 - a?)(1 - %) sin k,a sin k, b+ 2(25 — 1) D]
= 851[3 ~ 0 Acos2k,a ~ 20 Beos k,acos k,b— 20Csin k,asin kb
+2(25-1)D (10

where o = cos $K_a, 8 = cos ; K, b and other parameters are defined as

A=2a%-1 B=a-f C = /(1 -a2)(1 - 82).

The LGFs are expressed as the integrals over the Brillouin zone. The integrations
are computed for general K using the linear analytical triangular method [22]. Some
interesting recurrence relations of the lattice Green’s functions for a peneral K # 0
can be developed and these provide a way to check the results of numerical calcvlation
[21]. Analytical expressions are available in some special cases. When K = 0,
Horiguchi [22] showed that the LGFs may be expressed in terms of the complete
elliptic integrals of the first, second and third kind. Also at the M point, where
K, = 0 and K, = =, the LGFs may be expressed in a rather simple form and
evaluated even more easily [21].

With nearest-neighbour (NN) interactions, and taking into account some symme-
oy properties of the triangular lattice, it can be seen that (9) connects the four
Green’s functions mentioned above with each of the other three Green’s functions.
Letting i and j in Green’s functions G(i,j,K,w) take one of the four values
(0,0}, (2,0), (1,1), and (—1,1), and denoting G(3, j, K,w) by the 4 x 4 matrix
G, the equations can be written more compactly as one matrix equation

(1+ Q)G =R (11)

where | is the identity matrix, the coefficient matrix Q is a 4 x 4 matrix, and another
4 x 4 matrix R contains all inhomogeneous terms. The elements of both Q and R are
functions of the LGF. Solving this matrix equation will give the four diagonal spectra
which interest us.

4. Critical points

Critical points are also important in analysing the structure of two-magnon propa-
gators and their evolution as a function of K. We define the density of states, or
spectral function, of any excitation by

plw) = ]_1}7 Z Slw — wy).
k
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Here, k is the wavevector , and w,, is the dispersion relation. Replacing the summa-
tion by an integration over the first BZ,

(w) = Vv ds
P =GP L, Vel

The critical points occur when [Vw,| = 0, and lead to the various singularities
in the density of states. They were first studied by van Hove [24] in the context of
one-particle excitations. Critical points are also important in analysing the structure
of two-magnon propagators and their evolution as a function of K.

Differentiating (10) with respect to ko and k, b, with some simple algebra, we
obtain the following solutions for critical points which can be divided into two groups.
The first group is given by sink e = sink,b = 0, or cosk,a = cosk,b = 0, for
all values of o and 3. They correspond to the high-symmetry points T" (the centre of
first BZ) and M, M’, M" of the first Brillouin zone in k space. They have energies,

wp =851{3 ~ a(2a* -~ 1) - 2008} + 2(25 -1)D T(kya =0, k,b=0)

wy = 85[{3 — o(2c” ~ 1) + 2008} + 2(25 - 1) D M(kza =0, kb= r)

wig = 85I{3 + 0(2a® — 1) — 20 /(1 = &2)(1 = A7)} + 2(25 - 1) D
M'(rf2,n/2)

wygr = 8SI{3 + o(202 - 1) + 20/(1 - a®)(1 - F%)} +2(25 ~1)D
M7(—xf2,7/2).

In contrast to these four solutions the remaining group of critical points move in
k space as o and g vary. They are determined by the set of equations:

2ABcos ka = (C? - B?)cosk,b
2ACsin kya = (C? - B*)sin kb.

Some different cases of parameters B and C should be distinguished and treated
separately. The full lines in figure 2 shows the critical lines of the isotropic 2D
triangulfar lattice. (Ignore the other data for the moment.)

Loly et al have studied the dispersion of the critical points with K in the square
lattice [15] and sC lattice [25]. With only isotropic NN interactions present, their
critical points both consist of straightlines (if plotted as a function of «), which
correspond to high-symmetry points [, X, M (and R in 3D sc), and both cases have
zero bandwidth at the Brillouin zone corner. For the SC lattice these lines begin to
bend, and critical lines which do not correspond to the high-symmetry points appear,
only after the next-nearest-neighbour (NNN) coupling is taken into account. However,
in the triangular lattice the complicated nature of the lattice results in both groups of
critical lines bending, as well as a non-zero minimum bandwidth existing even when
only NN isotropic interactions are present. A similiar phénomenon was also found for
the NN FCC magnet [16].
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404 L ag

Figure 2. Dispersion of resonance peaks and bound
states in the isotropic case; D = 0, ¢ = 1 and
5 = 1. The full curves give the upper and lower
edges of the two-magnon continuum as well as the
internal critical lines (labelled as I',M,M’, M",
and X, p,8), for w as a function of K where
K poes throwgh ' ~— X — M — I'. The
resonances of the three spectra are denoted by ©
for G(0,0), + for G(1,1), and x for G(1',1").
The bound states below the continuum are denoted
by asterisks (*) for type-s, by triangles (a) for type-
d-

5. Results and discussions -

The main computational effort is associated with the evaluation and storage of
the 10 wors for different K and w values. The set of equations in (11) are
then solved by numerically inverting (I + Q) and the diagonal Green’s functions
G(0,0), G(1,1), G(1',1’) and G(1”,1") are obtained. As K changes along high-
symmetry directions rom I' — X — M — T, two of the three NN Green’s
functions are always identical, leaving only two of them independent. Therefore only
G(0,0), G(1,1), G(1’,1') need to be presented here.

J.1. § =1, K = ( isotrapic exchange

Figure 3 shows the continuum spectrum of G(0,0), G(1,1) in the isotropic case
where D = 0, and o = 1 for K = 0, and § = 1. With the unit of energy (w)
chosen as I, the peak of G(0,0) is found at w == 27.8, while the peak of G(1,1) is
at w = 30.8. The critical point at w = 32.0 is associated with a sharp drop in both
G(0,0) and G(1,1) and creates a shoulder above this point, At K = 0 the rise in
G(1,1) at the bottom of the band is all that remains of the s-wave exchange bound
state, whose binding energy vanishes at that point.

In previous studies [11] it has been instructive to locate the Ising levels, which
are obtained by reducing J;; (the transverse terms of the exchange integrals in (1})
to zero. In this limit, the energy of two spin deviations on adjacent lattice sites (NN)
is 2251+ 2D(25 - 1), while two deviations on the same site (single-ion) require an
energy of 24 S1.



3426 X H Qu and P D Loly

=~IM{E(0.0))
=tufetne))
2.5
T
2.3
2.74
2.1
2.0
1.9
1.8
1.7 [
1.6
1.5
1,44
1.3
1.2
L}
1.0
0.3
.8
Q.7
0.6
9.5
0.4
0.3
9.2
0.1
0.0

T T T L

1‘D W El 0 S0
Figure 3. Two-magnon spectra at K = 0 in the isotropic case; D =0, o = 1 and
S = 1. The asterisked curve represents single-ion spectra, — Im G(0,0), while the full
curve represents NN spectra, — Im G(1,1).

5.2 §=1, K # 0 isotropic exchafge

In our numerical calculations we begin 1o detect bound states below the lower bound-
ary of the continuum as K moves close t0 X, the corner of the first BZ. For K # @
the excitations along different directions are certainly different so that the degeneracy
at K = 0 is lifted by the appearance of a second distinct NN excitation spectrum,
G(1/,1"). As |K| increases, the principal resonances of single-ion spectra and the
two nearest-neighbour spectra generally move down in epergy. Figure 2 shows how
the resonances of the continuum and the bound states evolve as a function of K in
the isotropic case. In our Green’s function formalism the bound state is expressed by
a &-function singularity of the imaginary part of the Green’s function located outside
the boundaries of the continuum. The real part of the Green’s function exhibits x~1-
type behaviour at points where the imaginary part exhibits a é-function singularity.
Since a §-function in the spectra of Im G(i, ¢, K ,w) is too narrow to be detected, in
practice the bound state is located by checking the sign change of Re G(¢,7, K,w).
In the isotropic case our numerical calculations only resolve one bound state below
the continuum for S = 1. It keeps very close to the bottom of the continuum, and
appears to join the continuum at the X point (K = (i, 7)), but is found again in
the X — M region. These bound states are identified as poles of all three two-
magnon propagators G(0,0), G(1,1), G(1’,1) in the I' — X region and also in
the M — T region, but they are the poles of the propagator G(1’,1') only in the
X — M region. We adopt the commonly used terminology of the hypercubic case
[12] to cali the bound state where all three Green’s functions have poles the ‘type-s’
exchange bound state, and the bound state where only G(1’,1') has pole ‘type-d’.
In the absence of anisotropy our numerical results for S = 1 resolve only the type-s
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bound state in the I' — X and M — T regions, and cnly the type-d bound state
in the X — M region.

3.3. Resonance dynamics and the continuum structure

The critical lines exhibit a very strong influence on evolution of the spectrum. In
figure 2, the G(1,1) and G(1',1’) resonances approach the critical line M, M’
between 040 and 0.60 (I' — X). (Here we introduce notation for positions along
the line from I’ to X.) While the principal peak is restrained below the critical line,
an additional hump shows up on the upper side of the critical line. Such effects were
first observed by Loly and Choudhury [10] in a study of the NN SC case. The same
phenomenon is also detected in the G(0,0) resonance when it reaches the critical
line between 0.8¢ and 0.90 (I' — X). The principal resonances of neither G(0,0),
nor G(1,1), nor G(1’,1) appear to be able to penetrate the critical line. However,
G(1,1) shows a stronger repulsion with the critical line, such that it crosses over
both G(0,0) and G(1’,1') on the way to the zone corner. In the (X — M)
region, some weight builds up along the line M’ (figure 2) and joins with the upper
humps which just penetrate the M’'-line. Other peaks pick up from the bottom at
K = (0,7) (M-point) and climb along the line M. Eventually all peaks join together
as K goes back to I'—our starting point at the centre of the first BZ Figure 4 shows
the spectrum of two-magnon propagators of an isotropic lattice for some selected K
values, which forms the basis for figure 2. In particular, figure 2(a) shows very strong
enhancement at the bottom of the band for G{0,0), G(1,1) and G(1',1’) at the
point K = 0.8 (I' — X). This is associated with the type-s bound state, which lies
just below the bottom edge near X. The influence in the continuum of bound states
is more visibly illustrated in the X — M region, where sharp peaks very close to
the bottom of the continvum are found at K = 0.1 (X — M) in both the G(1,1)
and G(1',1") spectra. The type-d bound state, which is the pole of G(1’,1'), is then
close to the edge. At K = 0.4 (X — M) only a strong enhancement of G(1,1)
is detected at the bottom of continuum, while the weight of G(1’,1’) probably goes
into this bound state.

5.4. Spin dependence

The effect of the spin magnitude 5, which is often ignored by previous researchers,
is found to be quite significant to the behaviour of bound states, as shown in figure 5.
For § = 1 our numerical results find only one bound state at each K value. When
the value of S changes from 1 to 1/2, while other parameters are kept the same, the
bound states are more strongly bound so that when S = 1/2 we find both type-s and
type-d bound states for large |K| values in the neighbourhood of the X point. Cur
results are consistent with the § = 1/2 results of Wada et af [19], but unfortunately
they did no calculations for § = 1.

Wada et al [19] have examined the bound states of the 2D triangular lattice for
S = % by another method, which is described in Mattis’s book [26]. In order to
compare with our results, we programmed their formulae, recalculated the bound
states at both $ = 1 and S = %, and carefully compared the data from the two
methods. Al results reached full agreement within the resolution of their published
diagrams.



o) L.E
7.4
184 1.3
.4 O] 1.2
1. 2.3
2.2 19
-8 1.5
2.0 Y
(B ] 1.1
E
o 13
1g 144
).e 1
1a 1.2
1.2 1.1
bk e
1o [}
[ ] 2.0
0. 0.7
:': 0.8
.54 0-&
o 0
o (B
ot 9.7
[N o
0.4 a.0

= —

[] a H] L] 0 <0
2.5 7.5
2.4 2.
z.3 z.3
2.2 2.2
24 EIH
z0] 2.0
1 -8
1.4 [
T T
1.6 1e
¥ ]
T4 ted
I -3
[ ] 12
bad il
1.0 10
-8 ] o.8
6.8 3.8
(B 8.7
a-5+ X
L B.5
o 0.4
0. 0.3
0.2 L B3
LI 0.

o0 _ . 0.0k s

° 0 50 ] w 50
Ty
.k bgL)
2.4 23
7.3 2.2
2.2 2.1
2. 2
2.0 1.9
] 1.8
v 1.1
1.7 [ 3
14 16
1.5 1.
it 13
33 ]
1.2 ksl
1.4 a
e 0.1
: a.p
an (&)
¢4 o
0.6 oy
G D.&
0.3 0.3
0.2 oz
[N a.

LR T T oe T
o 0 w 0 @ - s o o )
« u

Figure 4. Two-magnon spectra of selected value of K as a function of w, The cases
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Figure 5. Comparison between the bound states of
S=1and §= 2 in the botropic case, as K
goes through I' — X — M — T". The ¢ritical-
point singularitics are iabelled as in figure 3. For
reference the epergy (unit, I) is scaled for S=1
at the left, and for S = 1/2 at the right. The
bound states below the continuum are denoted by
@ for $ =1 and by asterisks for § = 1/2. For
clarity, the types and type-d are labelled by the
same symbol.
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3.5. Anisotropies

We studied several different cases of anisotropies by experimenting with the size of
the D and o anisotropies respectively. For a brief illustration we only present one
case where D and o are taken as 2.26 and 0.78, respectively. These particular values
are chosen to compare with the Raman scattering experiment which is discussed in
the next subsection. D anijsotropy produces a gap below the continuum band and lifts
the whole band by 2(25—1) D, while o anisotropy squeezes the band. Figure 6 shows
the spectrum at the Bz centre (K = 0). In general, the resonance of G(0,0) at
K = 0 is barely affected when I3 introduces the shift, but it is affected slightly when
o deforms the continuum. On the other hand, the resonance of G(1,1) exhibits
significant changes when various D and o are introduced. However, the position
of the resonance with respect to the band remains essentially unchanged. Figure 7
shows the critical lines still playing an important role in directing the evolution of
resonances, as is also shown in our discussion of the isotropic case. However, there
are some significant differences due to the effect of anisotropies. The trajectories of
the resonances are apparently shifted, mainly due to the shift of their starting points,
as we discussed in the previous paragraph. Another phenomenon is that the humps
formed on the upper side of the critical line become much smaller as D becomes
larger. From several different anisotropic cases which we have studied [11}, it appears
that the evolution of resonances can probably be determined roughly by kmowing their
starting positions and the topology of the critical lines.

The positions of type-s and type-d bound states are barely changed by the presence
of D and o, though our study of other anisotropic cases shows that they seem to be
*pulled’ slightly closer to the bottom of the continuum by the single-ion anisotropy
(D). The formation of additional ‘single-ion’ bound states is detected as expected,
enhanced by the effect of the D anisotropy. For relatively small values of D, we
used a hybridization of type-s with the single-ion type of bound states that exist for
all regions ' — X — M — I'. For much larger values of single-ion anisotropy a
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Figure 6 ‘Fvo-magnon spectra at K = 0 for Figure 7. Dispersion of resonance peaks and bound

D= 226,06 =078 and 5= 1. The asterisked states for D = 2.26,c =0.78 and S=1,as K

curve represents single-ion spectra, — Im G(0,0), goes through I’ —— X — M — T, The critical-

the full curve represents NN spectra, — Im G(1,1).  point singularities are denoted with the same con-
vention as in figure 3. The resonances of the
three spectra are denoted by @ for G(0,0), + for
G(1,1), and x for G(1',1'). The bound slates
below the continuum are denoted by asterisks for
type-s, and triangles for type-d. The ‘single-ion’
bound state which lies below both type-s and type-
d is also denoted by an asterisk.

true single-ion bound state will be found to extend to the BZ centre (K = 0).

5.6. A 2D model for FeBr, and Raman scattering

Two-magnon Raman scattering was discovered in the mid-1960s when lasers be-
came available for studying solids [27]. For transparent antiferromagnets, Fleury
[28] showed that the strong magnon—magnon interactions distorted the spectra from
the bare density of states; this was soon explained by the theoretical calculation of
Elliott et o/ [29]. The small wavevector of optical radiation means that one-magnon
scattering occurs in the centre region of the Brillouin zone (K = ¢); the two-magnon
process arises from a pair of magnons with equal and opposite wavevectors, so that
again the total wavevector (K) is constrained to the centre of the first Brillouin zone.

Raman scattering in FeBr, has been studied by Psaltakis et af [17] and Johnstone
et al [30). The structure of FeBr, comprises layers of cations sandwiched between
two layers of anions, with such composite sheets stacked along the trigonal ¢ axis.
The Fe?t layer is a two-dimensional triangular lattice. This salt is known to exhibit
certain two-dimensional ferromagnetic character below the Néel temperature, since
the inter-sublattice coupling is substantially smaller than the intra-sublattice coupling.
Psaltakis er of [17] identified the peak at 90.6 cm~! = 27.96[ as a two-magnon line,
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and interpreted the two peaks at 29.6 cm~! = 9.147 and 127.5 cm™! = 39.357
as possible evidence of two-magnon bound states below and above the continuum,
respectively. In our calculation, where D = 2.27 and ¢ = 0.78 are chosen to reflect
the parameters measured in the FeBr, salt, we found the resonance of G(0,0) at
26.47 and G(1,1) at 33.107, while lower and upper boundaries of the continuum
are at 9.771 and 37.81, respectively. This is in reasonable agreement with the
experiment of Psaltakis et al, even though our model only consists of a single layer of
the triangular lattice and nearest-neighbour interactions. Further study incorporating
three-dimensionality is needed in order to to give a more precise explanation of
the shape of the Raman spectrum. Such calculations would, at present, be quite
formidabie computationally.

In FeBr, the ratio of the NN interlayer coupling parameter to the NN intralayer
parameter is 0.29. The same ratio in FeCl,, which has similiar magnetic structure,
is only 0.05 [31]. In this sense FeCl, seems even closer to our 2D triangular model.
However the two-magnon scattering peak in FeCl, was not found experimentally
[31], and we expect, following Tonegawa [4], that a single-fon bound state below the
continuum would be a strong feature of its strong uniaxial anisotropy.

6. Conclusions

The behaviour of two-magnon bound states and resonances of the 2D NN triangular
Heisenberg ferromagnet was examined for total pair wavevectors K in three high-
symmetry directions. The general results are found to be consistent with the previous
work in the 3D lattice, as well as the plane square lattice. However, the more com-
plicated nature of the triangular lattice does give rise to some interesting phenomena
which are not present in simpler lattice structures. The effect of the spin magnitude
S, which is rarely considered by other researchers, is found to be quite significant.
The NN triangular case shares with the NN FCC case a non-zero minimum width of
the continuum (as plotted as a function of K). It also has a much more complicated
internal structure of the non-interacting spectrum as shown by our study of its critical-
lines. A strong enough D always produces a single-ion bound state, while a small
enough o also helps form bound states.

The general trends which we have elucidated give a reasonable degree of confi-
dence that the simpler analysis of the unperturbed continuum structure would enable
one to predict the behaviour of the resonances once a starting point has been estab-
lished. We have compared our results with the available data from Raman scattering
experiments for FeBr, and a fairly good agreement is achieved.
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Note added in proof. We agree with an cbservation by one of the referees that it is expected that a
bound state exists for all X, in analogy with the NN square lattice [26]. This follows from the finite band
edge density-of-states of bare magnons (and hence LGF) characteristic of 2D lattices for all K except at
the M point (where these singularities become inverse square roots through collapse to 10). Numerical
calculations of the type used here are not optimized to scarch for very weakly bound states, but rather
address the question of continuum structure in general in order to gain an understanding of the location
of two-magnon Raman resonances.
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